image
image
image
image
image
image
image
image
image
image

Find an explicit description of Nul A\text{Nul } A by listing vectors that span the null space.

A=[13600145]A = \begin{bmatrix} 1 & 3 & 6 & 0 \\ 0 & 1 & 4 & -5 \end{bmatrix}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find an explicit description of nul a\text{nul } a by listing vectors that span the null space.

a=[13600145]a = \begin{bmatrix} 1 & 3 & 6 & 0 \\ 0 & 1 & 4 & -5 \end{bmatrix}

Find an explicit description of \text{nul } a by listing vectors that span the | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 15, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Assignment: Ch4 Section 2-3 Question Number 1
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

To find the null space of matrix AA, we solve the equation Ax=0A \mathbf{x} = \mathbf{0}, where x=[x1x2x3x4]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} and Ax=0A \mathbf{x} = 0

Means solving:

[13600145][x1x2x3x4]=[00]\begin{bmatrix} 1 & 3 & 6 & 0 \\ 0 & 1 & 4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

This gives the system of linear equations :

x1+3x2+6x3=0x_1 + 3x_2 + 6x_3 = 0

x2+4x35x4=0x_2 + 4x_3 - 5x_4 = 0

Step 1: Solve the system

From the second equation, solve for x2x_2:

x2=4x3+5x4x_2 = -4x_3 + 5x_4

Substitute this into the first equation:

x1+3(4x3+5x4)+6x3=0x_1 + 3(-4x_3 + 5x_4) + 6x_3 = 0

x112x3+15x4+6x3=0x_1 - 12x_3 + 15x_4 + 6x_3 = 0

x16x3+15x4=0x_1 - 6x_3 + 15x_4 = 0

x1=6x315x4x_1 = 6x_3 - 15x_4

Step 2: Express the solution in parametric vector form

Let x3=tx_3 = t and x4=sx_4 = s, where tt and ss are free parameters. Then:

x1=6t15sx_1 = 6t - 15s

x2=4t+5sx_2 = -4t + 5s

x3=t,x4=sx_3 = t, \quad x_4 = s

Thus, the general solution for the null space is:

x=t[6410]+s[15501]\mathbf{x} = t \begin{bmatrix} 6 \\ -4 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -15 \\ 5 \\ 0 \\ 1 \end{bmatrix}

Step 3: Conclusion

The null space of AA, Nul A\text{Nul } A, is spanned by the vectors:

{[6410],[15501]}\left\{ \begin{bmatrix} 6 \\ -4 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -15 \\ 5 \\ 0 \\ 1 \end{bmatrix} \right\}


Final Answer:

A spanning set for Nul A\text{Nul } A is:

{[6410],[15501]}\left\{ \begin{bmatrix} 6 \\ -4 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -15 \\ 5 \\ 0 \\ 1 \end{bmatrix} \right\}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)