image
image
image
image
image
image
image
image
image
image

Find an orthogonal basis for the column space of the matrix given on the right: [156362216152]\begin{bmatrix} -1 & 5 & 6 \\ 3 & -6 & 2 \\ 2 & -1 & 6 \\ 1 & -5 & -2 \end{bmatrix}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find an orthogonal basis for the column space of the matrix given on the right: [156362216152]\begin{bmatrix} -1 & 5 & 6 \\ 3 & -6 & 2 \\ 2 & -1 & 6 \\ 1 & -5 & -2 \end{bmatrix}

Find an orthogonal basis for the column space of the matrix given on the right:
| Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 20, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Assignment: Ch6 Section 4 Question Number 3
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

  1. Step 1: Let v1\mathbf{v}_1, v2\mathbf{v}_2, and v3\mathbf{v}_3 be the columns of the matrix. We apply the Gram-Schmidt process to these vectors to find an orthogonal basis.

Start with u1=v1\mathbf{u}_1 = \mathbf{v}_1: u1=[1321]\mathbf{u}_1 = \begin{bmatrix} -1 \\ 3 \\ 2 \\ 1 \end{bmatrix}

  1. Step 2: Compute the projection of v2\mathbf{v}_2 onto u1\mathbf{u}_1: proju1v2=v2u1u1u1u1\text{proj}_{\mathbf{u}_1} \mathbf{v}_2 = \frac{\mathbf{v}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1

First, compute the dot products: v2u1=[5615][1321]=5(1)+(6)(3)+(1)(2)+(5)(1)=51825=30\mathbf{v}_2 \cdot \mathbf{u}_1 = \begin{bmatrix} 5 \\ -6 \\ -1 \\ -5 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 3 \\ 2 \\ 1 \end{bmatrix} = 5(-1) + (-6)(3) + (-1)(2) + (-5)(1) = -5 - 18 - 2 - 5 = -30

u1u1=(1)2+32+22+12=1+9+4+1=15\mathbf{u}_1 \cdot \mathbf{u}_1 = (-1)^2 + 3^2 + 2^2 + 1^2 = 1 + 9 + 4 + 1 = 15

So, the projection is: proju1v2=3015u1=2[1321]=[2642]\text{proj}_{\mathbf{u}_1} \mathbf{v}_2 = \frac{-30}{15} \mathbf{u}_1 = -2 \begin{bmatrix} -1 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -6 \\ -4 \\ -2 \end{bmatrix}

Now, subtract this projection from v2\mathbf{v}_2 to get u2\mathbf{u}_2: u2=v2proju1v2=[5615][2642]=[3033]\mathbf{u}_2 = \mathbf{v}_2 - \text{proj}_{\mathbf{u}_1} \mathbf{v}_2 = \begin{bmatrix} 5 \\ -6 \\ -1 \\ -5 \end{bmatrix} - \begin{bmatrix} 2 \\ -6 \\ -4 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 3 \\ -3 \end{bmatrix}

  1. Step 3: Compute the projection of v3\mathbf{v}_3 onto u1\mathbf{u}_1 and u2\mathbf{u}_2.

First, the projection onto u1\mathbf{u}_1: proju1v3=v3u1u1u1u1\text{proj}_{\mathbf{u}_1} \mathbf{v}_3 = \frac{\mathbf{v}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1

Dot products: v3u1=[6262][1321]=6(1)+2(3)+6(2)+(2)(1)=6+6+122=10\mathbf{v}_3 \cdot \mathbf{u}_1 = \begin{bmatrix} 6 \\ 2 \\ 6 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 3 \\ 2 \\ 1 \end{bmatrix} = 6(-1) + 2(3) + 6(2) + (-2)(1) = -6 + 6 + 12 - 2 = 10

Thus, proju1v3=1015u1=23[1321]=[2324323]\text{proj}_{\mathbf{u}_1} \mathbf{v}_3 = \frac{10}{15} \mathbf{u}_1 = \frac{2}{3} \begin{bmatrix} -1 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ 2 \\ \frac{4}{3} \\ \frac{2}{3} \end{bmatrix}

Next, subtract this from v3\mathbf{v}_3: v3proju1v3=[6262][2324323]=[1001]\mathbf{v}_3 - \text{proj}_{\mathbf{u}_1} \mathbf{v}_3 = \begin{bmatrix} 6 \\ 2 \\ 6 \\ -2 \end{bmatrix} - \begin{bmatrix} -\frac{2}{3} \\ 2 \\ \frac{4}{3} \\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}

Thus, the orthogonal basis for the column space is: u1=[115315215115],u2=[1301313],u3=[120012]\mathbf{u}_1 = \begin{bmatrix} -\frac{1}{\sqrt{15}} \\ \frac{3}{\sqrt{15}} \\ \frac{2}{\sqrt{15}} \\ \frac{1}{\sqrt{15}} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)