image
image
image
image
image
image
image
image
image
image

Is λ=2\lambda = 2 an eigenvalue of AA? If so, find all corresponding eigenvectors.

A=[412212210]A = \begin{bmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Is λ=2\lambda = 2 an eigenvalue of aa? if so, find all corresponding eigenvectors.

a=[412212210]a = \begin{bmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix}

Is \lambda = 2 an eigenvalue of a? if so, find all corresponding eigenvector | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 21, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Final Exam Question Number 18
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

To determine if λ=2\lambda = 2 is an eigenvalue of AA, we need to solve the equation:

Eigenvalues and Eigenvectors Calculator

(A2I)v=0(A - 2I) \mathbf{v} = 0

Where II is the identity matrix, and v\mathbf{v} is the eigenvector corresponding to the eigenvalue λ=2\lambda = 2.

Step 1: Compute A2IA - 2I

First, calculate the matrix A2IA - 2I:

A2I=[412212210]2[100010001]A - 2I = \begin{bmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

This gives:

A2I=[421221222102]=[212212212]A - 2I = \begin{bmatrix} 4 - 2 & -1 & -2 \\ 2 & 1 - 2 & -2 \\ 2 & -1 & 0 - 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ 2 & -1 & -2 \\ 2 & -1 & -2 \end{bmatrix}

Step 2: Solve the system (A2I)v=0(A - 2I) \mathbf{v} = 0

Now, solve the equation:

[212212212][xyz]=[000]\begin{bmatrix} 2 & -1 & -2 \\ 2 & -1 & -2 \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

This results in the following system of linear equations:

2xy2z=02xy2z=02xy2z=0\begin{aligned} 2x - y - 2z &= 0 \\ 2x - y - 2z &= 0 \\ 2x - y - 2z &= 0 \end{aligned}

Notice that all three equations are the same. Simplify the system to:

2xy2z=02x - y - 2z = 0

Step 3: Express solutions in terms of free variables

We have one equation and three unknowns, so two of the variables are free.
Let's express yy in terms of xx and zz:

y=2x2zy = 2x - 2z

Let z=tz = t and x=sx = s, where ss and tt are free parameters. Then:

y=2s2ty = 2s - 2t

The general solution is:

v=[s2s2tt]=s[120]+t[021]\mathbf{v} = \begin{bmatrix} s \\ 2s - 2t \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}

Thus, the eigenvectors corresponding to λ=2\lambda = 2 are linear combinations of the vectors:

[120]and[021]\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}

Final Answer:

The correct answer is (a): v=(2,0,2)\mathbf{v} = (2, 0, 2) and (2,4,0)(2, 4, 0).



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)