image
image
image
image
image
image
image
image
image
image

Let u=[541]\mathbf{u} = \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} and v=[369]\mathbf{v} = \begin{bmatrix} -3 \\ -6 \\ 9 \end{bmatrix}. Compute and compare uv\mathbf{u} \cdot \mathbf{v}, u2\|\mathbf{u}\|^2, v2\|\mathbf{v}\|^2, and u+v2\|\mathbf{u} + \mathbf{v}\|^2. Do not use the Pythagorean Theorem.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Let u=[541]\mathbf{u} = \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} and v=[369]\mathbf{v} = \begin{bmatrix} -3 \\ -6 \\ 9 \end{bmatrix}. compute and compare uv\mathbf{u} \cdot \mathbf{v}, u2\|\mathbf{u}\|^2, v2\|\mathbf{v}\|^2, and u+v2\|\mathbf{u} + \mathbf{v}\|^2. do not use the pythagorean theorem.

Let \mathbf{u} = \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} and $\mathbf{v} =  | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 18, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Assignment: Ch6 Section 1 Question Number 10
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

Step 1: Compute uv\mathbf{u} \cdot \mathbf{v}

The dot product uv\mathbf{u} \cdot \mathbf{v} is calculated as:

uv=(5)(3)+(4)(6)+(1)(9)=1524+9=0\mathbf{u} \cdot \mathbf{v} = (-5)(-3) + (4)(-6) + (1)(9) = 15 - 24 + 9 = 0

Thus, uv=0\mathbf{u} \cdot \mathbf{v} = 0.

Step 2: Compute u2\|\mathbf{u}\|^2

The square of the magnitude of u\mathbf{u} is given by:

u2=(5)2+(4)2+(1)2=25+16+1=42\|\mathbf{u}\|^2 = (-5)^2 + (4)^2 + (1)^2 = 25 + 16 + 1 = 42

Thus, u2=42\|\mathbf{u}\|^2 = 42.

Step 3: Compute v2\|\mathbf{v}\|^2

The square of the magnitude of v\mathbf{v} is:

v2=(3)2+(6)2+(9)2=9+36+81=126\|\mathbf{v}\|^2 = (-3)^2 + (-6)^2 + (9)^2 = 9 + 36 + 81 = 126

Thus, v2=126\|\mathbf{v}\|^2 = 126.

Step 4: Compute u+v2\|\mathbf{u} + \mathbf{v}\|^2

First, find u+v\mathbf{u} + \mathbf{v}:

u+v=[541]+[369]=[8210]\mathbf{u} + \mathbf{v} = \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} + \begin{bmatrix} -3 \\ -6 \\ 9 \end{bmatrix} = \begin{bmatrix} -8 \\ -2 \\ 10 \end{bmatrix}

Now, compute the square of the magnitude of u+v\mathbf{u} + \mathbf{v}:

u+v2=(8)2+(2)2+(10)2=64+4+100=168\|\mathbf{u} + \mathbf{v}\|^2 = (-8)^2 + (-2)^2 + (10)^2 = 64 + 4 + 100 = 168

Thus, u+v2=168\|\mathbf{u} + \mathbf{v}\|^2 = 168.

Final Results:

  • uv=0\mathbf{u} \cdot \mathbf{v} = 0
  • u2=42\|\mathbf{u}\|^2 = 42
  • v2=126\|\mathbf{v}\|^2 = 126
  • u+v2=168\|\mathbf{u} + \mathbf{v}\|^2 = 168

Since uv=0\mathbf{u} \cdot \mathbf{v} = 0 and u2+v2=u+v2\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2, both statements imply that the vectors u\mathbf{u} and v\mathbf{v} are orthogonal.



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)