image
image
image
image
image
image
image
image
image
image

Use the sum-to-product formula to simplify the expression:

If sin39+sin21=sinA\sin 39^\circ + \sin 21^\circ = \sin A^\circ, where 0<A<900^\circ < A < 90^\circ, then:

A=__A = \_\_ degrees.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Use the sum-to-product formula to simplify the expression:

if sin39+sin21=sina\sin 39^\circ + \sin 21^\circ = \sin a^\circ, where 0<a<900^\circ < a < 90^\circ, then:

a=__a = \_\_ degrees.

![Use the sum-to-product formula to simplify the expression:

if $\sin 39^\circ | Doubtlet.com](https://doubt.doubtlet.com/images/20241016-072705-9.4.5.png)

Solution:

Neetesh Kumar

Neetesh Kumar | October 16, 2024

Pre-Calculus Homework Help

Sum-to-Product and Product-to-Sum Formulas Assignment 9.4 Question 05
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We will use the sum-to-product formula for sin(A)+sin(B)\sin(A) + \sin(B):

sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin(A) + \sin(B) = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)

Trignometric-ratio Formula Sheet

Given expression: sin39+sin21\sin 39^\circ + \sin 21^\circ

Using the sum-to-product formula:

sin39+sin21=2sin(39+212)cos(39212)\sin 39^\circ + \sin 21^\circ = 2 \sin\left(\frac{39^\circ + 21^\circ}{2}\right) \cos\left(\frac{39^\circ - 21^\circ}{2}\right)

Simplify:

=2sin(602)cos(182)= 2 \sin\left(\frac{60^\circ}{2}\right) \cos\left(\frac{18^\circ}{2}\right)

=2sin(30)cos(9)= 2 \sin(30^\circ) \cos(9^\circ)

We know that:

sin(30)=12\sin(30^\circ) = \frac{1}{2}

Thus:

=2×12×cos(9)= 2 \times \frac{1}{2} \times \cos(9^\circ)

=cos(9)= \cos(9^\circ)

This matches the given equation sinA\sin A^\circ. Therefore, we compare:

cos(9)=sinA\cos(9^\circ) = \sin A^\circ

Since sin(A)=cos(90A)\sin(A^\circ) = \cos(90^\circ - A^\circ), we get:

A=909=81A^\circ = 90^\circ - 9^\circ = 81^\circ


Final answer:

A=81A = \boxed{81^\circ}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)